

Image formation

(a)

Chapter 23

Ray Optics - Applications: Image Formation

- Images are always located by extending diverging rays back to a point at which they intersect

- Images are located either at a point from which the rays of light actually diverge or at a point from which they appear to diverge
- To find the image it is usually enough to find intersection of just two rays!
- Magnification $=\frac{\text { image height }}{\text { object height }}$

Flat Refracting Surface

$$
\begin{aligned}
& n_{2} \sin \theta_{2}=n_{1} \sin \theta_{1} \\
& \text { Snell's Law } \\
& \sin \theta_{2} \approx \theta_{2} \approx \frac{d}{q} \\
& \sin \theta_{1} \approx \theta_{1} \approx \frac{d}{p} \\
& n_{2} \frac{d}{q}=n_{1} \frac{d}{p} \\
& q=p \frac{n_{2}}{n_{1}}
\end{aligned}
$$

Image is always virtual

$$
n_{1}>n_{2}
$$

Chapter 23

Flat mirror

Flat Mirror

- One ray starts at point P, travels to Q and reflects back on itself
- Another ray follows the path $P R$ and reflects according to the law of reflection
- The triangles $P Q R$ and P'QR are congruent
- $\boldsymbol{h}=\boldsymbol{h}^{\prime}$ - magnification is 1 .

The law of reflection

Chapter 23

Geometric Optics - Applications: Thin Lenses

 radius of curvature

Biconvex

Convexconcave
(a)

Planoconvex

Biconcave

Convexconcave
(b)

Thin Lenses

Thin Lens Equation:

The thin lens is characterized by only one parameter - FOCAL LENGTH.

Thin Lenses: Focal Length

$$
\left.\begin{array}{c}
\frac{1}{f}=(n-1)\left(s_{\text {first }} \frac{1}{R_{\text {first surface }}}+s_{\text {second }} \frac{1}{R_{\text {second surface }}}\right) \\
s_{\text {first }}=-1 \\
s_{\text {first }}=1 \\
s_{\text {second }}=1
\end{array}\right)
$$

Focal Length: Examples
$f>0$

$$
R_{1}>R_{2} \quad \frac{1}{R_{1}}<\frac{1}{R_{2}}
$$

$$
s_{2}=1
$$

$$
\frac{1}{f}=(n-1)\left(-\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)
$$

f<0

$$
\frac{1}{f}=(n-1)\left(-\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)
$$

$$
s_{1}=1
$$

$$
\begin{aligned}
& R_{1}>R_{2} \\
& \frac{1}{R_{1}}<\frac{1}{R_{2}}
\end{aligned}
$$

$$
s_{2}=-1
$$

$$
\begin{array}{r}
\frac{1}{f}=(n-1)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right) \\
f<0 \\
11
\end{array}
$$

Thin Lenses

$$
f>0
$$

Converging lens

$$
f<0
$$

Diverging lens

They are thickest in the middle

Biconvex

(b)
c2004 Thomson - Brooks Cole
They are thickest at the edges

Planoconcave

Thin Lenses: Sign Conventions for s, s^{\prime}

$$
\frac{1}{s}+\frac{1}{s^{\prime}}=\frac{1}{f}
$$

Lateral magnification:

$$
M=\frac{h^{\prime}}{h}=-\frac{s^{\prime}}{s}
$$

$$
h^{\prime}>0
$$

- Find the focal length f
- From the Thin Lens Equation find $s^{\prime}\left(s\right.$ is known) ${ }_{h}$

$$
s^{\prime}=\frac{1}{\frac{1}{f}-\frac{1}{s}}
$$

- From the sign of s^{\prime} find the
 position of image
- Find magnification

$$
M=\frac{h^{\prime}}{h}=-\frac{s^{\prime}}{s}
$$

Thin Lenses: Focal Points

- If $s \gg f$, then

$$
\frac{1}{s} \ll \frac{1}{f}
$$

and

$$
s^{\prime}=\frac{1}{\frac{1}{f}-\frac{1}{s}}=f
$$

(a)
©2004 Thomson - Brooks/Cole
>Because light can travel in either direction through a lens, each lens has two focal points.
$>$ However, there is only one focal length

- If $s \gg f$, then

$$
\frac{1}{s} \ll \frac{1}{f}
$$

and

$$
s^{\prime}=\frac{1}{\frac{1}{f}-\frac{1}{s}}=f
$$

- s^{\prime} is negative

(b)
©2004 Thomson - Brooks/Cole

Thin Lenses: Ray Diagram

Converging Lenses

For a converging lens, the following three rays (two is enough) are drawn:

- Ray 1 is drawn parallel to the principal axis and then passes through the focal point on the back side of the lens
- Ray 2 is drawn through the center of the lens and continues in a straight line
- Ray 3 is drawn through the focal point on the front of the lens (or as if coming from the focal point if $p<f$) and emerges from the lens parallel to the principal axis

(a)

Converging Lenses: Example 1

(a)
©2004 Thomson - Brooks/Cole

- The image is real
- The image is inverted
- The image is on the back side of the lens

$$
s^{\prime}=\frac{1}{\frac{1}{f}-\frac{1}{s}}=\frac{s f}{s-f}>0
$$

$$
M=\frac{h^{\prime}}{h}=-\frac{s^{\prime}}{s}<0
$$

Converging Lenses: Example 2

(b)
ceoon tomene: Boosescol - The image is virtual

- The image is upright
- The image is larger than the object
- The image is on the front side of the lens

$$
s^{\prime}=\frac{1}{\frac{1}{f}-\frac{1}{s}}=\frac{s f}{s-f}<0
$$

$$
M=\frac{h^{\prime}}{h}=-\frac{s^{\prime}}{s}>0
$$

Diverging Lenses

- For a diverging lens, the following three rays (two is enough) are drawn:
- Ray 1 is drawn parallel to the principal axis and emerges directed away from the focal point on the front side of the lens
- Ray 2 is drawn through the center of the lens and continues in a straight line
- Ray 3 is drawn in the direction toward the focal point on the back side of the lens and emerges from the lens parallel to the principal axis

(c)

Diverging Lenses: Example

f<0

(c)
©2004 Thomson - Brooks/Cole

- The image is virtual
- The image is upright
- The image is smaller
- The image is on the front side of the lens

$$
s^{\prime}=\frac{1}{\frac{1}{f}-\frac{1}{s}}=\frac{s f}{s-f}<0
$$

$$
M=\frac{h^{\prime}}{h}=-\frac{s^{\prime}}{s}>0
$$

Image Summary

- For a converging lens, when the object distance is greater than the focal length ($s>f$)
- The image is real and inverted

(a)

(b)
- The image is virtual and upright \qquad
- For a diverging lens, the image is always virtual and upright
- This is regardless of where the object is placed

Combination of Two Lenses

$>$ The image formed by the first lens is located as though the second lens were not present
$>$ The image of the first lens is treated as the object of the second lens
$>$ Then a ray diagram is drawn for the second lens
$>$ The image formed by the second lens is the final image of the system
> If the image formed by the first lens lies on the back side of the second lens, then the image is treated as a virtual object for the second lens

- s will be negative
$>$ The overall magnification is the product of the magnification of the separate lenses

$$
\left.\frac{1}{f}=(n-1)\left(s_{1} \frac{1}{R_{1}}+s_{2} \frac{1}{R_{2}}\right) \quad\right)^{f>0} \quad(())
$$

(a)

(c)

Resolution

Resolution

$>$ The ability of optical systems to distinguish between closely spaced objects
$>$ If two sources are far enough apart to keep their central maxima from overlapping, their images can be distinguished

The images are said to be resolved
$>$ If the two sources are close together, the two central maxima overlap and the images are not resolved \qquad

Resolution, Rayleigh's Criterion

Rayleigh's criterion:
 When the central maximum of one image falls on the first minimum of another image, the images are said to be just resolved

Resolution of a slit:

$>$ Since $\lambda \ll a$ in most situations, $\sin \theta$ is very small and $\sin \theta \sim \theta$
$>$ Therefore, the limiting angle (in rad) of resolution for a slit of width a is

$$
\theta_{\min }=\theta_{\text {dark }}=\lambda / a
$$

$>$ To be resolved, the angle subtended by

©2004 Thomson - Brooks Cole the two sources must be greater than $\theta_{\text {min }}$

Resolution: Circular Aperture

- The diffraction pattern of a circular aperture consists of a central bright disk surrounded by progressively fainter bright and dark rings
- The limiting angle of resolution of the circular aperture is

$$
\theta_{\min }=1.22 \frac{\lambda}{D}
$$

$-D$ is the diameter of the aperture

The images are well resolved

The images are just resolved

The images are unresolved

