Chapter 22

Electrical Current and Resistance

Conductor in Electric Field

no electric field

Conductor in Electric Field

no electric field

Conductor in Electric Field: Electric current

Copyright © 2004 Pearson Education, Inc., publishing as Addison Wesley

Electric Current

- Electric current is the rate of flow of charge through some region of space
- The SI unit of current is the ampere (A), 1 A = 1 C / s

- Assume charges are moving perpendicular to a surface of area A
- If *Q* is the amount of charge that passes through *A* in time
 then the average current is

Conservation of current at a junction: Junction Rule

> The first Kirchhoff's rule – Junction Rule:

The sum of the currents entering any junction must equal the sum of the currents leaving that junction

- A statement of Conservation of Charge

Batteries: Voltage

The battery establishes an electric field in the connecting wires
This field applies a force on electrons in the wire just outside of the plates

The force causes the electrons to move onto the negative plate

Ohm's Law: Resistance

Current Density

Current density is defined as the current per unit area

$$j = \frac{I}{A}$$

This expression is valid only if the current density is uniform and **A** is perpendicular to the direction of the current

j has **SI** units of **A**/m²

Ohm's Law

Ohm's Law: Current density is proportional to electric field

$$j = \sigma E$$

The constant of proportionality, σ , is called the conductivity of the conductor.

The **conductivity** depends only on the material of conductor.

Simplified model of electron motion in conductor gives

$$\sigma = \frac{n\tau q^2}{m}$$

au - is the material dependent characteristic of conductor.

$$j = \sigma E$$

- Ohm's law states that for many materials, the ratio of the current density to the electric field is a constant *σ* that is independent of the electric field producing the current
 - Most metals, but not all, obey Ohm's law
 - Materials that obey Ohm's law are said to be ohmic
 - Materials that do not obey Ohm's law are said to be nonohmic
- Ohm's law is not a fundamental law of nature
- Ohm's law is an empirical relationship valid only for certain materials

Ohm's Law

Voltage across the conductor (potential difference between points A and B)

$$\Delta V = V_B - V_A = El$$

where electric field is the same along the conductor. Then

$$E = \frac{\Delta V}{l} \qquad j = \frac{I}{A}$$
$$j = \sigma E$$
$$E = \frac{\Delta V}{l} = \frac{1}{\sigma} j = \frac{I}{\sigma A}$$

 σ A

-I = RI

Another form of the Ohm's Law $\longrightarrow \Delta V = -\frac{i}{2}$

12

Ohm's Law: Resistance

B

 The voltage applied across the ends of the conductor is proportional to the current through the conductor
 The constant of proportionality is called the **resistance** of the conductor

$$\Delta V = RI$$
 resistance

SI unit of resistance is **ohm** (Ω) 1 Ω = 1 V / A

Ohm's Law: Resistance

B

 $\Delta V = RI$ resistance $R = \frac{l}{\sigma A}$ Or $R = \frac{\rho l}{A}$

where $\rho = 1/\sigma$ is the resistivity – the inverse of the conductivity

Resistivity has SI units of ohm-meters (Ω m)

Resistance: Example

$$R = \rho \frac{l}{A}$$

The same amount of material has been used to fabricate the wire with uniform cross-section and length *I/3*. What is the resistance of the wire?

$$R_{1} = \rho \frac{l_{1}}{A_{1}}$$

$$l_{1}A_{1} = lA \qquad l_{1} = l/3$$

$$A_{1} = \frac{lA}{l_{1}} = 3A$$

$$R_{1} = \rho \frac{l_{1}}{A_{1}} = \rho \frac{l/3}{3A} = \rho \frac{l}{9A} = \frac{R}{9}$$

$$l_{15}$$

The wires are all made of the same material. Rank in order, from largest to smallest, the resistances of these wires.

Ohm's Law

$$j = \sigma E \qquad \Delta V = RI$$

- Materials that obey Ohm's law are said to be ohmic
- Materials that do not obey Ohm's law are said to be nonohmic

An ohmic device

- The resistance is constant over a
- wide range of voltages
- The relationship between current
- and voltage is linear
 - The slope is related to the

resistance

Ohm's Law

$$j = \sigma E \qquad \Delta V = RI$$

- Materials that obey Ohm's law are said to be ohmic
- Materials that do not obey Ohm's law are said to be nonohmic

Nonohmic materials

The current-voltage relationship is nonlinear

Batteries: EMF (electromotive force)

The battery establishes an electric field in the connecting wires
This field applies a force on electrons in the

wire just outside of the plates

The force causes the electrons to move onto the negative plate

Copyright © 2004 Pearson Education, Inc., publishing as Addison Wesley

Copyright © 2004 Pearson Education, Inc., publishing as Addison Wesley

Batteries: EMF (electromotive force)

Electromotive force (EMF) – voltage of the battery

Internal resistance of the battery

 $\begin{array}{c} \mathbf{(b)} \\ \mathbf{+} \\ \mathcal{E} \\ \mathbf{-} \\$

Copyright © 2004 Pearson Education, Inc., publishing as Addison Wesley

Copyright © 2004 Pearson Education, Inc., publishing as Addison Wesley

Chapter 22

Electric Power

Electrical Power

As a charge moves from *a* to *b*, the electric potential energy of the system increases by $Q\Delta V$ > The chemical energy in the

The chemical energy in the battery must decrease by the same amount

As the charge moves through the resistor (*c* to *d*), the system loses this electric potential energy during collisions of the electrons with the atoms of the resistor

This energy is transformed into internal energy in the resistor

Electrical Power

The power is the rate at which the energy is delivered to the resistor

 $\Delta U = Q \Delta V$ - the energy delivered to the resistor when charge Q moves from a to b (or from c to d)

The power:

$$P = \frac{\Delta U}{\Delta t} = \frac{Q}{\Delta t} \Delta V = I \Delta V$$
$$P = I \Delta V = I^2 R = \frac{\Delta V^2}{R}$$

<u>Units</u>: *I* is in A, *R* is in Ω , *V* is in V, and *P* is in W (watt)

Electrical Power

 $=\frac{\Delta V}{R}$

Power: Example

A 1000-W heating coil designed to operate from 110 V is made of Nichrome wire 0.5 mm in diameter. Assuming that the resistivity of the Nichrome remains constant at its 20 C value, find the length of wire used.

$$\rho_N = 1.5 \cdot 10^{-6} \,\Omega \cdot m \qquad \qquad R = \rho_N \frac{l}{A} \qquad \qquad A = \pi \frac{d^2}{4}$$

$$P = I\Delta V = I^2 R = \frac{U^2}{R}$$

$$R=\frac{U^2}{P}$$

$$l = A \frac{R}{\rho_N} = A \frac{U^2}{\rho_N P} = \pi \frac{d^2}{4} \frac{U^2}{\rho_N P} = \frac{3.14 \cdot 0.5^2 \cdot 10^{-6} \cdot 110^2}{4 \cdot 1.5 \cdot 10^{-6} \cdot 1000} m = 1.58m$$