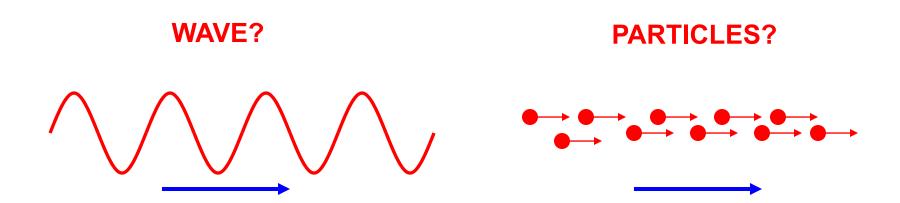
Chapter 17

Light as a Wave: Wave Optics

The Nature of Light – Particle or Waves?



The Nature of Light – Particle or Waves?

- Before the beginning of the nineteenth century, light was considered to be a stream of particles
- Newton was the chief architect of the particle theory of light
 - He believed the particles left the object and stimulated the sense of sight upon entering the eyes

He was wrong (?) LIGHT IS A WAVE.

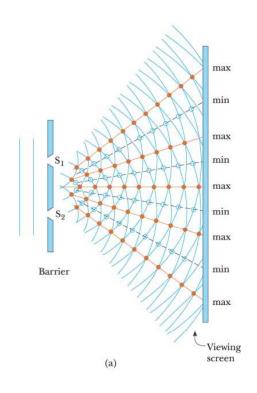
The Nature of Light – Particle or Waves?

How can we distinguish between particles and waves?

For waves we have interference, for particles – not!

The Nature of Light – Wave Theory?

- Christian Huygens argued that light might be some sort of a wave motion
- Thomas Young (1801) provided the first clear demonstration of the wave nature of light
 - He showed that light rays interfere with each other
 - Such behavior could not be explained by particles

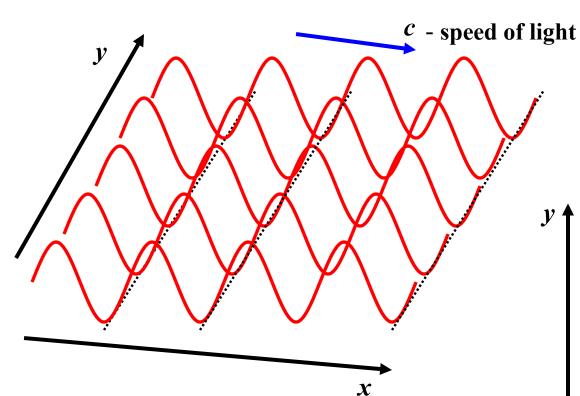


©2004 Thomson - Brooks/Cole

During the nineteenth century, other developments led to the general acceptance of the wave theory of light

Light as a Wave

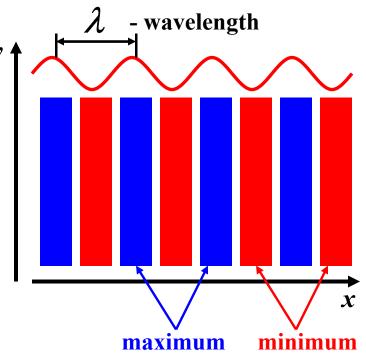
Plane wave



Period of "oscillation" – $T = \frac{\lambda}{c}$ (time to travel distance of wavelength)

Frequency of light
$$f = \frac{1}{T} = \frac{c}{\lambda}$$

changes only along one direction



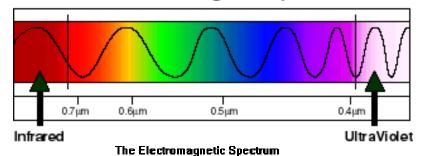
Light as a Wave

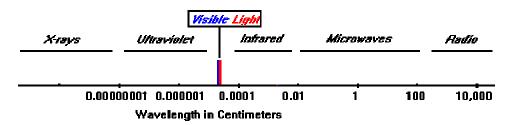
Light is characterized by

- its speed c and
- wavelength λ (or frequency f)

Different frequency (wavelength) – different color of light

Visible Light Region of the Electromagnetic Spectrum



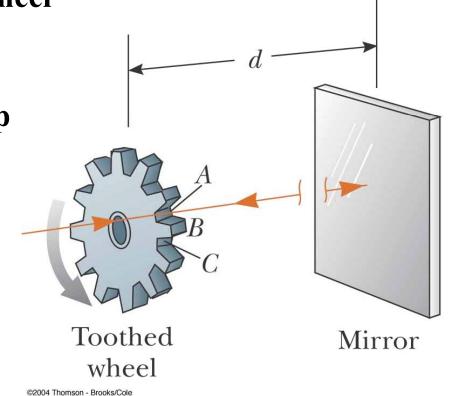


What is the speed of light?

Measurements of the Speed of Light – Fizeau's Method (1849)

 d is the distance between the wheel and the mirror

- Δt is the time for one round trip
- Then $c = 2d / \Delta t$
- Fizeau found a value of $c = 3.1 \times 10^8 \text{ m/s}$



 $c = 3.00 \times 10^8 \text{ m/s}$

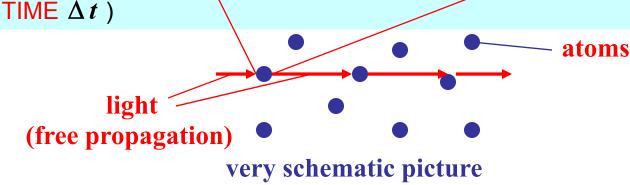
- Speed in Vacuum!

What is the speed of light in a medium?

The speed of light in a medium is smaller than the speed in vacuum.

To understand this you can think about it in a following way:

- ➤ The medium consists of atoms (or molecules), which can absorb light and then emit it,
- > so the propagation of light through the medium can be considered as a process of absorption and subsequent emission (AFTER SOME TIME A t)



Speed of Light

$$v = \frac{c}{n}$$
 - The speed of light in the medium

The properties of the medium is characterized by one dimensionless constant -n, (it is called index of refraction, we will see later why)

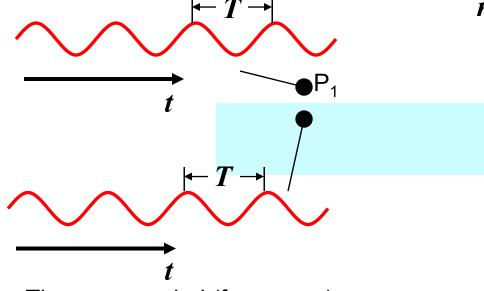
- which is equal to 1 for vacuum (and very close to 1 for air),
- greater then 1 for all other media

Table 35.1

Indices of Refraction ^a			
Substance	Index of Refraction	Substance	Index of Refraction
Solids at 20°C		Liquids at 20°C	
Cubic zirconia	2.20	Benzene	1.501
Diamond (C)	2.419	Carbon disulfide	1.628
Fluorite (CaF ₂)	1.434	Carbon tetrachloride	1.461
Fused quartz (SiO ₂)	1.458	Ethyl alcohol	1.361
Gallium phosphide	3.50	Glycerin	1.473
Glass, crown	1.52	Water	1.333
Glass, flint	1.66	344	
Ice (H ₂ O)	1.309	Gases at 0°C, 1 atm	
Polystyrene	1.49	Air	1.000 293
Sodium chloride (NaCl)	1.544	Carbon dioxide	1.000 45

^a All values are for light having a wavelength of 589 nm in vacuum.

Light in the Media

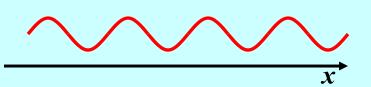


The same period (frequency) in all media, then

$$\lambda_n = \frac{c}{n}T = \frac{\lambda_{air}}{n}$$

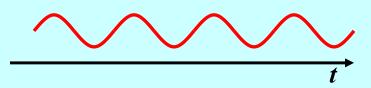
Light as a Wave

$$E(x,t) = E_0 \sin\left(2\pi \frac{x}{\lambda} + 2\pi ft\right) = E_0 \sin\left(2\pi \frac{x}{\lambda} + \omega t\right)$$
 Distribution of some Field inside the wave of frequency f



At a given time *t* we have sin-function of *x* with "initial" phase, depending on *t*

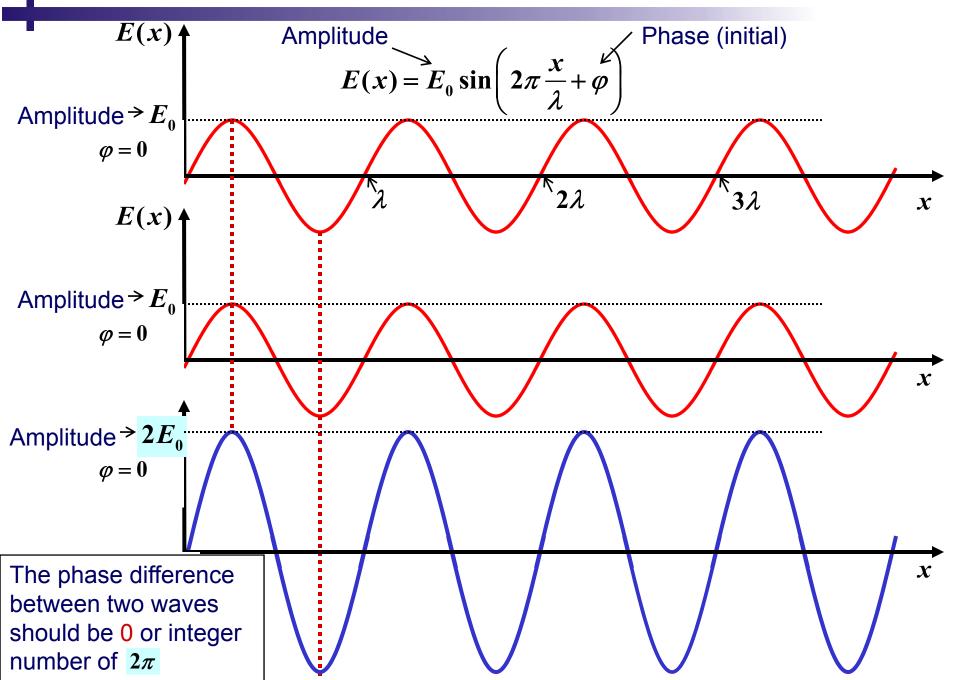
$$E(x) = E_0 \sin\left(2\pi \frac{x}{\lambda} + \varphi_t\right) \qquad \varphi_t = 2\pi f t = \omega t$$



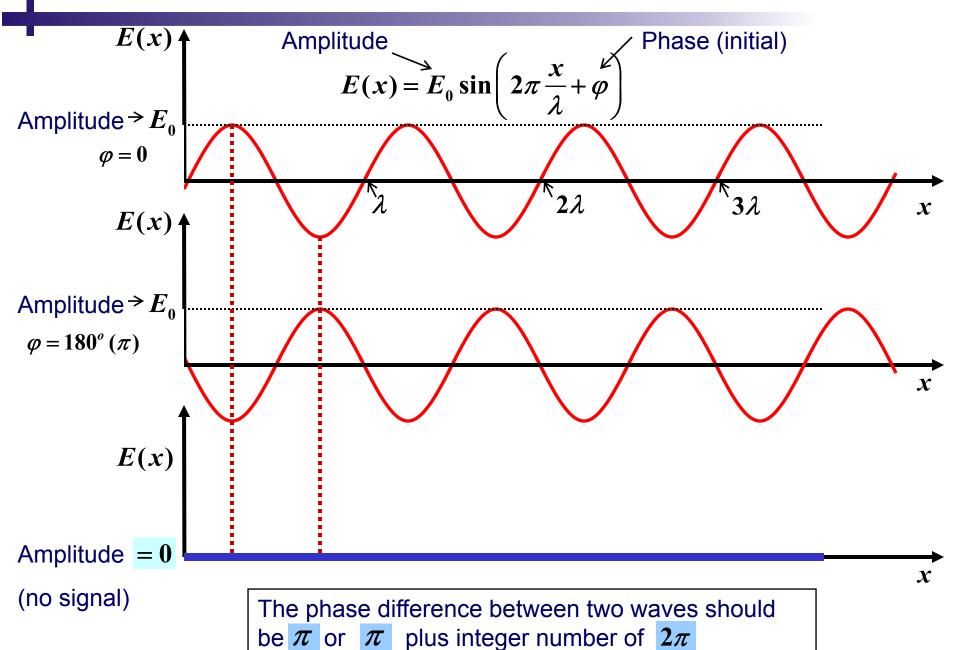
At a given space point **x** we have sin-function of **t** with "initial" phase, depending on **x**

$$E(x) = E_0 \sin(\omega t + \varphi_x) \qquad \varphi_x = 2\pi \frac{x}{\lambda}$$

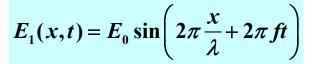
Sin-function: Constructive Interference



Sin-function: Destructive Interference



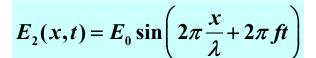
Waves: Interference



Interference – sum of two waves

$$\varphi_{x_1} = 2\pi \frac{x_1}{\lambda}$$

$$E_1(x,t) = E_0 \sin\left(2\pi f t + \varphi_{x_1}\right)$$

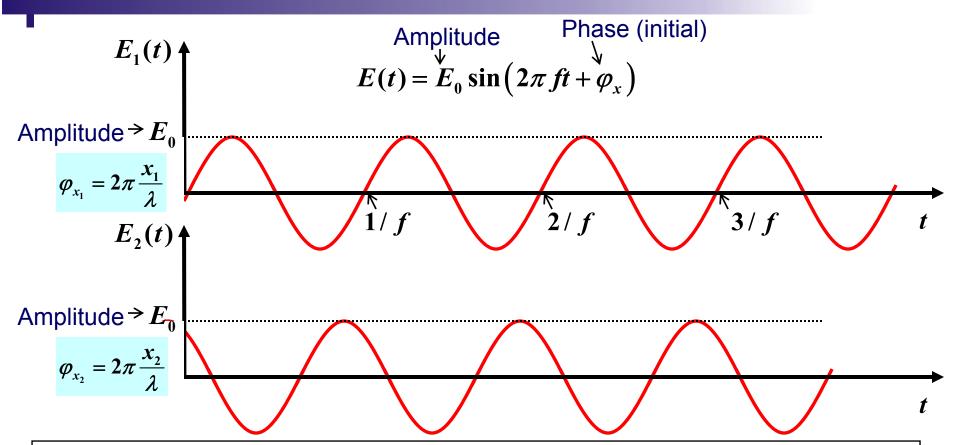


$$E_2(x,t) = E_0 \sin\left(2\pi f t + \varphi_{x_2}\right)$$

$$\varphi_{x_2} = 2\pi \frac{x_2}{\lambda}$$

- ➤ In constructive interference the amplitude of the resultant wave is greater than that of either individual wave
- ➤ In *destructive interference* the amplitude of the resultant wave is less than that of either individual wave

Waves: Interference

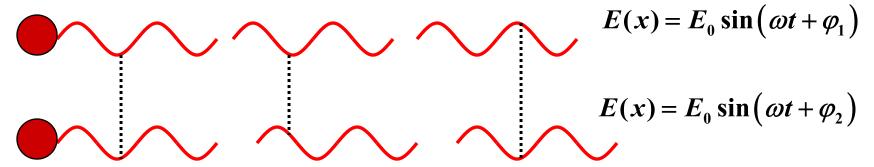


Constructive Interference: The phase difference between two waves should be 0 or integer number of 2π $\varphi_{x_1} - \varphi_{x_2} = 2\pi m$ $m = 0, \pm 1, \pm 2...$

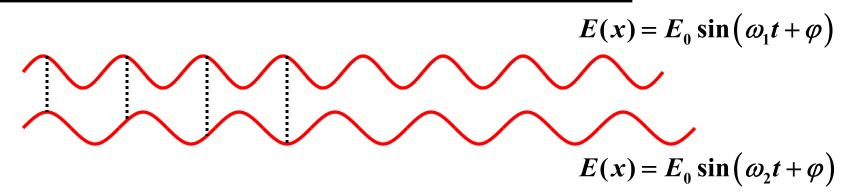
Destructive Interference: The phase difference between two waves should be π or π integer number of 2π $\varphi_{x_1} - \varphi_{x_2} = \pi + 2\pi m$ $m = 0, \pm 1, \pm 2...$

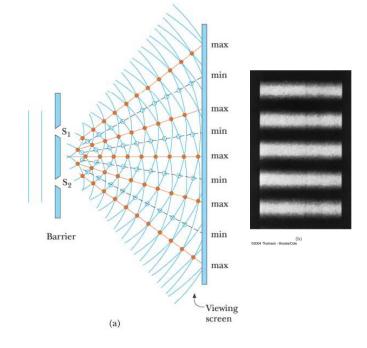
Conditions for Interference

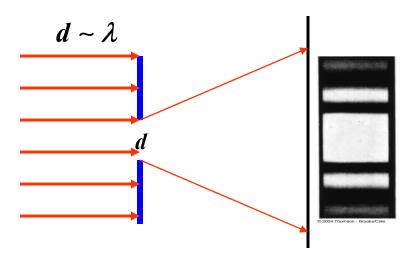
coherent



The sources should be monochromatic (have the same frequency)



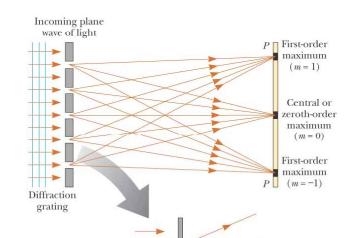




3. Diffraction Grading

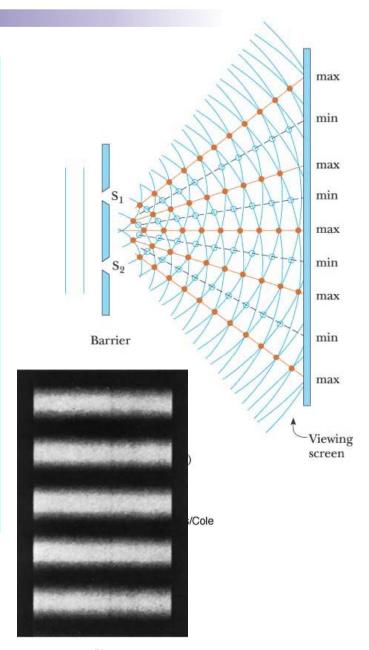
2. Single-Slit Diffraction

©2004 Thomson - Brooks/Cole



Young's Double-Slit Experiment

- Thomas Young first demonstrated interference in light waves from two sources in 1801
- The narrow slits S₁ and S₂ act as sources of waves
- The waves emerging from the slits originate from the same wave front and therefore are always in phase



$$E(x) = E_0 \sin(\omega t + \varphi_x)$$

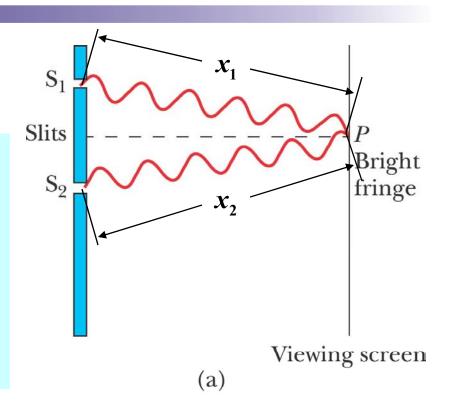
$$\varphi_x = 2\pi \frac{x}{\lambda}$$

The phase of wave 1:

$$\varphi_{x,1} = 2\pi \frac{x_1}{\lambda}$$

The phase of wave 2:

$$\varphi_{x,2} = 2\pi \frac{x_2}{\lambda}$$



©2004 Thomson - Brooks/Col

Constructive Interference: $\varphi_{x,2} - \varphi_{x,1} = 2\pi n$ where n is integer (bright fringe)

$$2\pi \frac{x_2}{\lambda} - 2\pi \frac{x_1}{\lambda} = 2\pi n \qquad \longrightarrow \qquad x_2 - x_1 = n\lambda$$

Destructive Interference: $\varphi_{x,2} - \varphi_{x,1} = \pi + 2\pi n$ where n is integer

(dark fringe)

$$x_2 - x_1 = \frac{\lambda}{2} + n\lambda$$

Constructive Interference:

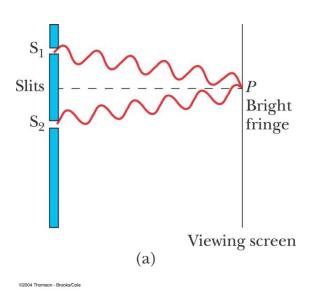
(bright fringe)

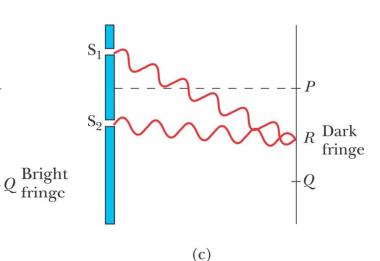
$$x_2 - x_1 = n\lambda$$

Destructive Interference:

(dark fringe)

$$x_2 - x_1 = \frac{\lambda}{2} + n\lambda$$





©2004 Thomson - Brooks/Cole

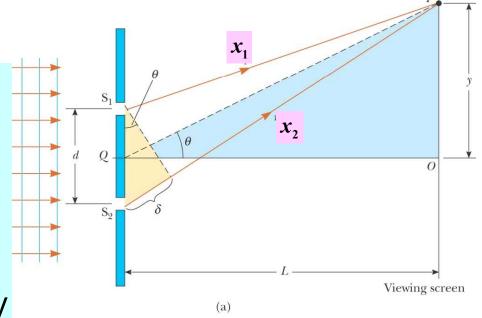
$$x_2 - x_1 = \lambda$$

(b)

$$x_2 - x_1 = \frac{\lambda}{2}$$

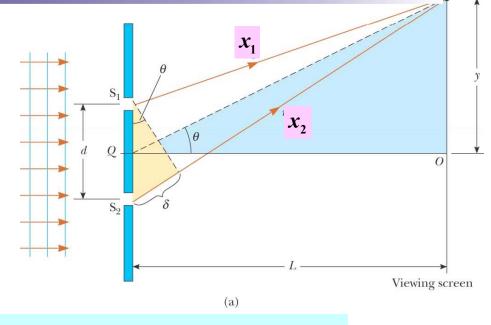
$$x_2 - x_1 = 0$$

- The path difference, δ, is found from the tan triangle
- $\delta = x_2 x_1 = d \sin \theta$
 - This assumes the paths are parallel
 - Not exactly true, but a very good approximation if L is much greater than d



©2004 Thomson - Brooks/Cole

$$\delta = x_2 - x_1 = d \sin \theta$$



Bright fringes (constructive interference):

$$\delta = d \sin \theta = n\lambda$$
 $n = 0, \pm 1, \pm 2, ...$

$$n = 0, \pm 1, \pm 2, \dots$$

n is called the order number

- when n = 0, it is the zeroth-order maximum
- when $n = \pm 1$, it is called the *first-order maximum*

Dark fringes (destructive interference):

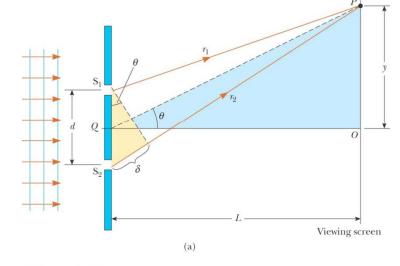
$$\delta = d \sin \theta = (n + \frac{1}{2})\lambda$$

$$n = 0, \pm 1, \pm 2, \dots$$

$$\delta = x_2 - x_1 = d \sin \theta$$

The positions of the fringes can be measured vertically from the zeroth-order maximum

 θ is small and therefore the small angle approximation $\tan \theta \sim \sin \theta$ can be used



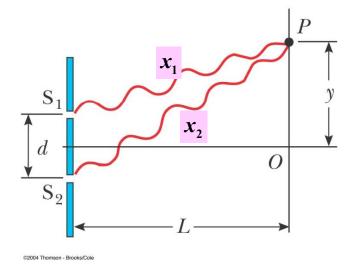
©2004 Thomson - Brooks/Cole

$$y = L \tan \theta \approx L \sin \theta$$

$$y_{\text{bright}} = \frac{\lambda L}{d} n$$
 (n = 0, ±1, ±2...)

For dark fringes

$$y_{\text{dark}} = \frac{\lambda L}{d} \left(n + \frac{1}{2} \right) \quad (n = 0, \pm 1, \pm 2...)$$



Constructive Interference: $\varphi_{x,2} - \varphi_{x,1} = 2\pi n$ (bright fringe)

$$\varphi_{x,2} - \varphi_{x,1} = 2\pi n$$
 where n is integer

 $n = 0, \pm 1, \pm 2, \dots$

$$2\pi \frac{x_2}{\lambda} - 2\pi \frac{x_1}{\lambda} = 2\pi n \qquad \longrightarrow \qquad x_2 - x_1 = n\lambda$$

$$y_{\text{bright}} = \frac{\lambda L}{d} n \quad (n = 0, \pm 1, \pm 2...)$$

Destructive Interference: (dark fringe)

$$\varphi_{x,2} - \varphi_{x,1} = \pi + 2\pi n$$
 where n is integer $n = 0, \pm 1, \pm 2, ...$

$$n = 0, \pm 1, \pm 2, \dots$$

$$x_2 - x_1 = \frac{\lambda}{2} + n\lambda$$

$$y_{\text{dark}} = \frac{\lambda L}{d} \left(n + \frac{1}{2} \right) \quad (n = 0, \pm 1, \pm 2 \dots)$$

Double-Slit Experiment: Example

The two slits are separated by 0.150 mm, and the incident light includes light of wavelengths $\lambda_1 = 540 nm$ and $\lambda_2 = 450 nm$. At what minimal distance from the center of the screen the bright line of the λ_1 light coincides with a bright line of the λ_2 light

Bright lines:

$$y_{\text{bright},1} = \frac{\lambda_1 L}{d} n_1 \quad (n_1 = 0, \pm 1, \pm 2...)$$

 $y_{\text{bright},2} = \frac{\lambda_2 L}{d} n_2 \quad (n_2 = 0, \pm 1, \pm 2...)$

$$y_{\text{bright},1} = \frac{540 \cdot 10^{-9} \cdot 1.4}{0.15 \cdot 10^{-3}} n_1(m) = 5n_1(mm) \qquad (n_1 = 0, \pm 1, \pm 2...)$$
1.4m

$$y_{\text{bright},2} = \frac{450 \cdot 10^{-9} \cdot 1.4}{0.15 \cdot 10^{-3}} n_2(\text{m}) \approx 4n_2(\text{mm}) \qquad (n_2 = 0, \pm 1, \pm 2...)$$

$$y_{\text{bright},1} = 0, 5, 10, 15, 20, 25...(\text{mm})$$

$$y_{\text{bright},1} = 0, 4, 8, 12, 16, 20...(\text{mm})$$

Double-Slit Experiment: Example

Light with a wavelength of 442 nm passes through a double-slip system that has a slip separation d=0.4 mm. Determine L so that the first dark fringe appears directly opposite both slits.

Dark lines:

$$y_{\text{dark,n}} = \frac{\lambda L}{d} \left(n + \frac{1}{2} \right) \quad (n = 0, \pm 1, \pm 2 \dots)$$

$$y_{\text{dark,1}} = \frac{d}{2}$$

$$0.4mm$$

$$S_1$$

$$S_2$$

$$S_2$$

$$L$$

$$y_{\text{dark},1} = \frac{1}{2} \frac{\lambda L}{d}$$

$$L = \frac{d^2}{\lambda} = \frac{0.4^2 \cdot 10^{-6} m^2}{442 \cdot 10^{-9} m} = 0.36 m = 36 cm$$

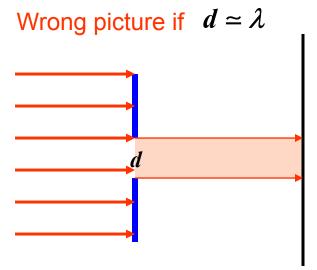
Chapter 17

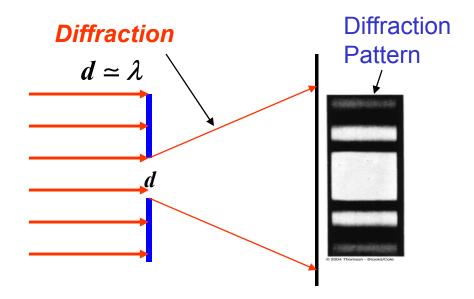
Diffraction Pattern and Interference

Diffraction

Diffraction:

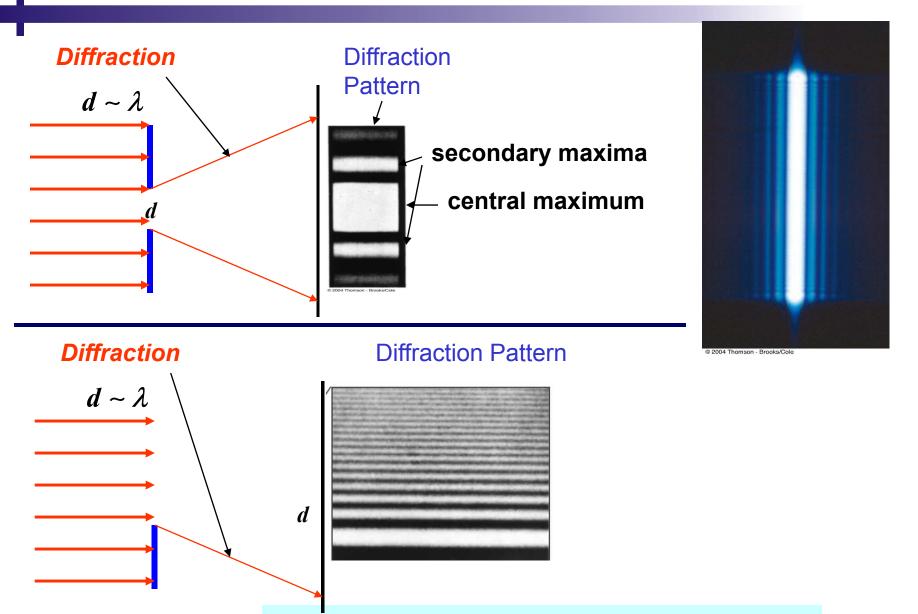
Light spreads beyond the narrow path defined by the slit into regions that would be in shadow if light traveled in straight lines





Diffraction and Interference are closely related;
Diffraction Patterns are due to Interference

Diffraction Pattern

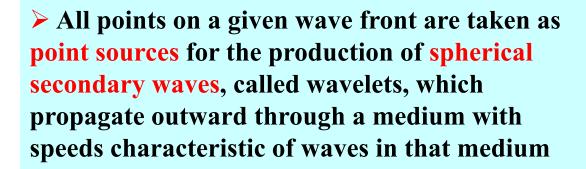


Diffraction Pattern is similar to Interference Pattern

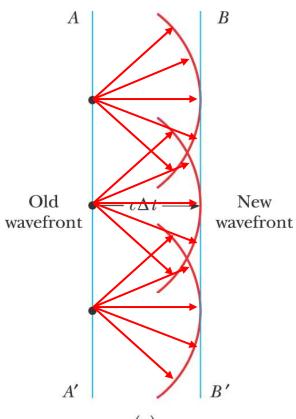
Huygens's Principle

Huygens's Principle

Huygens's Principle is a geometric construction for determining the position of a new wave at some point based on the knowledge of the wave front that preceded it



➤ After some time has passed, the new position of the wave front is the surface tangent to the wavelets

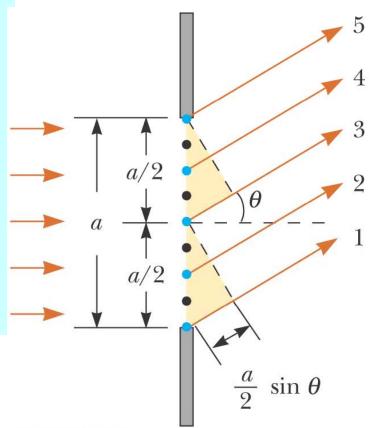


©2004 Thomson - Brooks/Cole

Single-Slip Diffraction

Single Slit Diffraction

- Each portion of the slit acts as a source of light waves
- Therefore, light from one portion of the slit can *interfere* with light from another portion



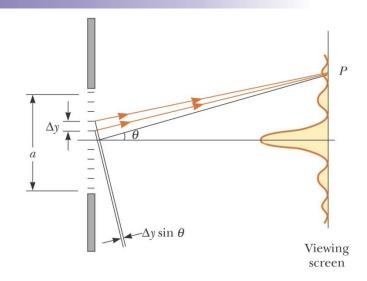
©2004 Thomson - Brooks/Cole

Intensity of Single-Slit Diffraction Pattern

$$I(\varphi) = I_{\text{max}} \left[\frac{\sin(\varphi/2)}{\varphi/2} \right]^2$$

$$\varphi = \frac{2\pi a \sin \theta}{\lambda}$$

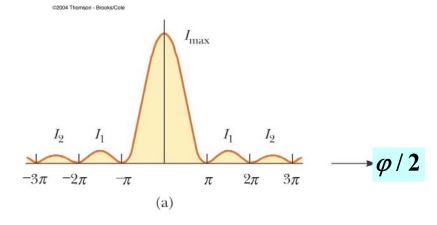
$$I(\theta) = I_{\text{max}} \left[\frac{\sin(\pi a \sin \theta / \lambda)}{\pi a \sin \theta / \lambda} \right]^{2}$$

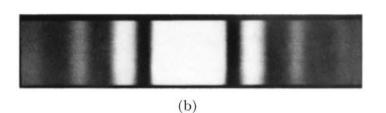


The first minimum occurs at

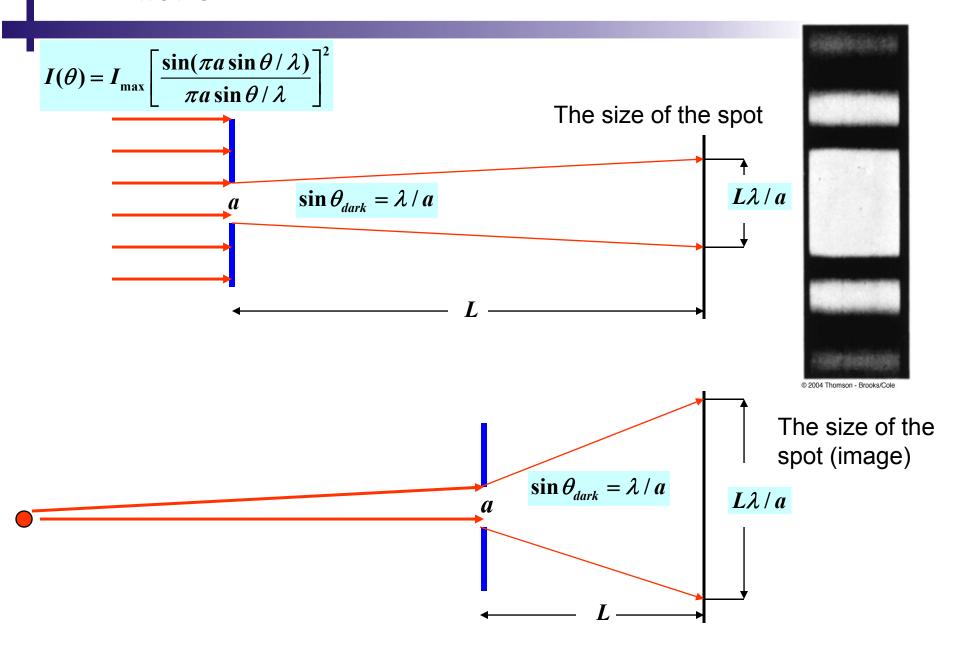
$$\sin(\varphi/2) = 0$$
 or $\varphi = 2\pi$ or

$$\sin \theta_{dark} = \lambda / a$$





Diffraction



Diffraction: Example

The source of the light emits the light with wavelength $\lambda = 540nm$.

The diffraction pattern is observed in the water, n = 1.33.

$$L = 10m, a=0.5 mm$$

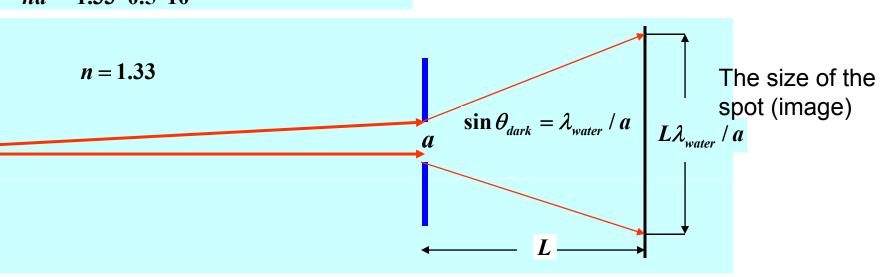
What is the size of the spot, *D*?

wavelength in the water

$$\sin \theta_{dark} = \lambda_{water} / a$$

$$D = L \lambda_{water} / a$$

$$D = \frac{L\lambda}{na} = \frac{10 \cdot 540 \cdot 10^{-9}}{1.33 \cdot 0.5 \cdot 10^{-3}} m = 8 \cdot 10^{-3} m = 8mm$$



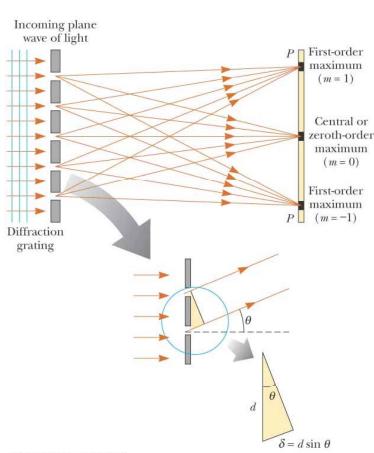
 $\lambda_{water} = \lambda / n$

Chapter 17.3

Diffraction Grading

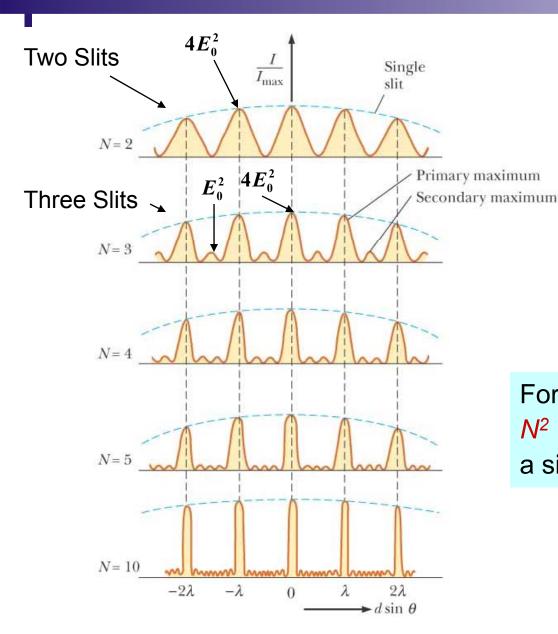
Diffraction Grading

- The diffraction grating consists of a large number of equally spaced parallel slits
 - A typical grating contains several thousand lines per centimeter
- ➤ The intensity of the pattern on the screen is the result of the *combined* effects of interference and diffraction
 - Each slit produces diffraction, and the diffracted beams interfere with one another to form the final pattern



©2004 Thomson - Brooks/Cole

N-Slit Interference: Intensity Graph



For N slits, the primary maxima is N^2 times greater than that due to a single slit

Diffraction Grading

The condition for *maxima* is

$$\Delta \varphi = 2\pi m$$
, $m = 0, \pm 1, \pm 2, \dots$

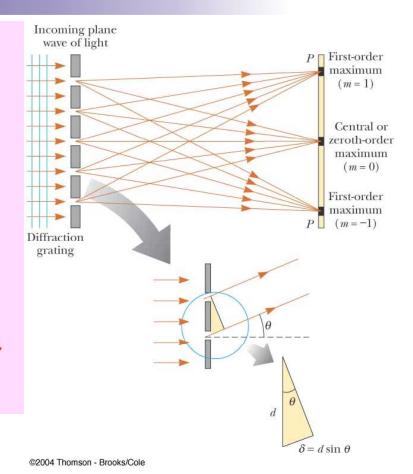
$$\Delta arphi = 2\pi rac{\mathcal{S}}{\lambda} = 2\pi rac{d\sin heta_{bright}}{\lambda}$$

then

$$d\sin\theta_{bright} = m\lambda$$

The integer *m* is the *order number* of the diffraction pattern

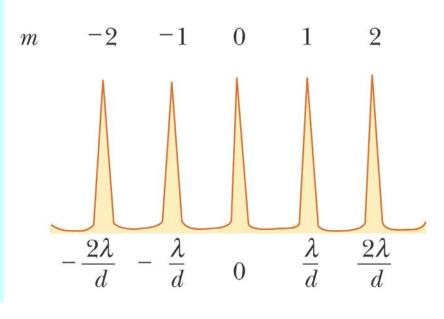
$$\Delta \varphi = 2\pi m$$



Diffraction Grading

- All the wavelengths are seen at m = 0
 - This is called the zerothorder maximum
- The first-order maximum corresponds to m = 1
- Note the sharpness of the principle maxima and the broad range of the dark areas

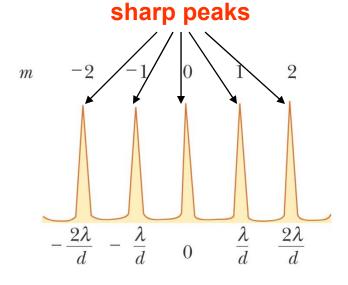
$$d\sin\theta_{bright} = m\lambda$$

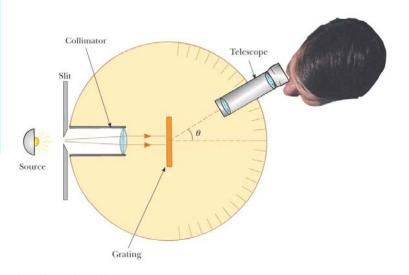


 $\sin \theta \longrightarrow$

Diffraction Grading Spectrometer

- The collimated beam is incident on the grating
- The diffracted light leaves the gratings and the telescope is used to view the image
- The wavelength can be determined by measuring the precise angles at which the images of the slit appear for the various orders





Diffraction Grading: Example

Three discrete spectral lines occur at angles 10.09°, 13.71°, and 14.77° in the first order spectrum of a grading spectrometer. If the grading has **N**=3600 slits per centimeter, what are the wavelength of the light?

$$d \sin \theta_{bright} = m \lambda$$

First order means that m=1, then

$$\lambda_1 = d \sin heta_1$$
 $\lambda_2 = d \sin heta_2$ $\lambda_3 = d \sin heta_3$
$$d = \frac{1cm}{N}$$
 Then
$$\lambda_1 = \frac{1}{N} \sin heta_1 = \frac{\sin 10.09}{3600} cm = 480nm$$
 $\lambda_2 = \frac{\sin 13.71}{3600} cm = 658nm$ $\lambda_3 = \frac{\sin 1}{3600} cm = 658nm$

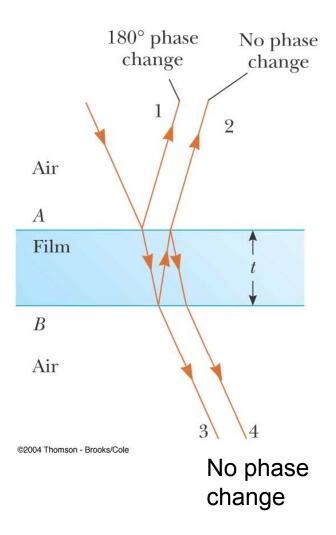
$$\lambda_3 = \frac{\sin 14.77}{3600} cm = 708nm$$

Chapter 17.4

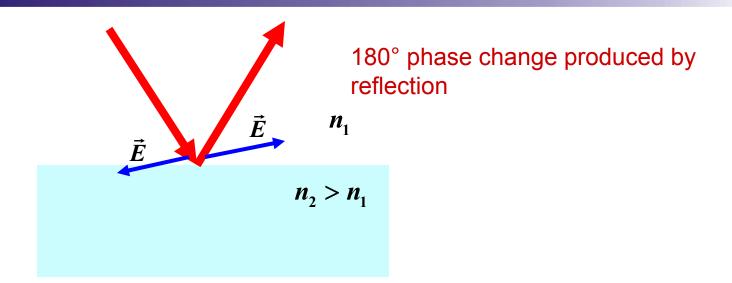
Interference in Thin Films

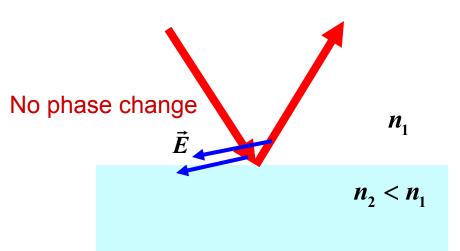
Interference:

- 1. Rays 1 and 2
- 2. Rays 3 and 4



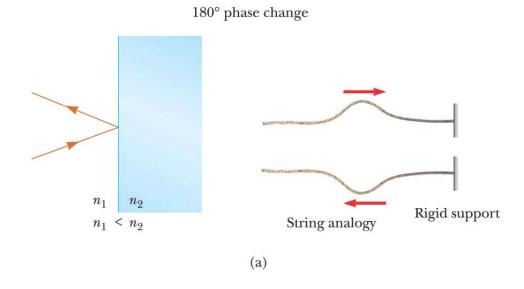
Phase Change due to Reflection



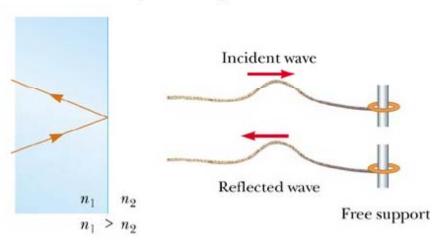


Only upon reflection from a medium of higher index of refraction than the one in which a wave was traveling

Phase Change due to Reflection

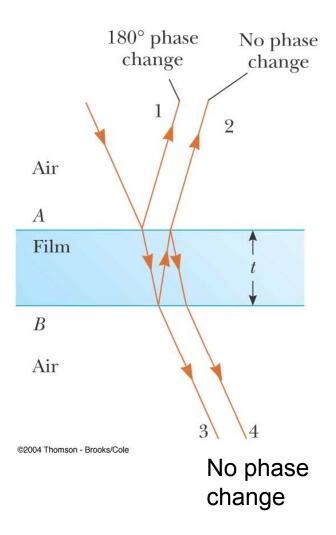


No phase change



Interference:

- 1. Rays 1 and 2
- 2. Rays 3 and 4



Interference:

- 1. Rays 1 and 2
- 2. Rays 3 and 4

1. Rays 1 and 2

Phase difference:

$$\Delta \varphi = \pi + 2\pi \frac{2t}{\lambda_n} = \pi + 2\pi \frac{2nt}{\lambda}$$

Due to phase change

Ray 2 travels an additional distance 2t compared to Ray 1



Constructive interference:

$$\Delta \varphi = \pi + 2\pi \frac{2nt}{\lambda} = 2\pi m$$

$$\Delta \varphi = \pi + 2\pi \frac{2nt}{\lambda} = 2\pi m$$

$$2nt = \left(m + \frac{1}{2}\right)\lambda \qquad m = 0, \pm 1, \pm 2, \dots$$

$$\Delta \varphi = \pi + 2\pi \frac{2nt}{\lambda} = \pi + 2\pi m$$

$$2nt = m\lambda \qquad m = 0, \pm 1, \pm 2, \dots$$

Interference:

- 1. Rays 1 and 2
- 2. Rays 3 and 4

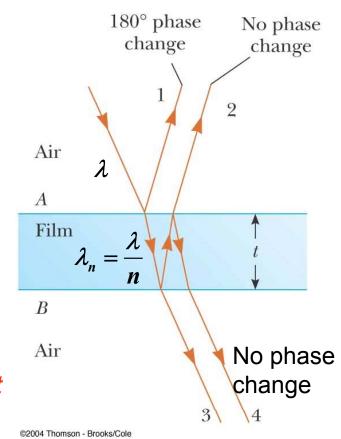
2. Rays 3 and 4

Phase difference:

$$\Delta \varphi = 0 + 2\pi \frac{2t}{\lambda_n} = 2\pi \frac{2nt}{\lambda}$$

no phase change

Ray 4 travels an additional distance 2t compared to Ray 3



Constructive interference:

$$\Delta \varphi = 2\pi \frac{2nt}{\lambda} = 2\pi m$$

$$2nt = m\lambda$$

$$m = 0, \pm 1, \pm 2, \dots$$

$$\Delta \varphi = 2\pi \frac{2nt}{\lambda} = \pi + 2\pi m$$

$$2nt = \left(m + \frac{1}{2}\right)\lambda \qquad m = 0, \pm 1, \pm 2, \dots^{51}$$

Soap Bubble Example

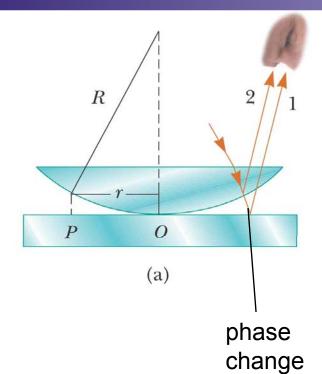
Constructive interference:

$$2nt = \left(m + \frac{1}{2}\right)\lambda \qquad m = 0, \pm 1, \pm 2, \dots$$

$$2nt = m\lambda \qquad m = 0, \pm 1, \pm 2, \dots$$

Newton's Rings

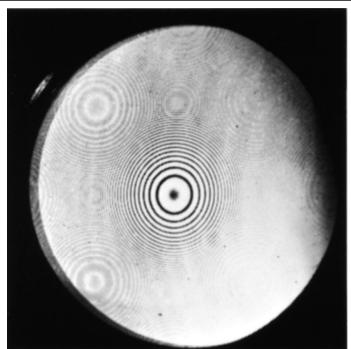
©2004 Thomson - Brooks/Cole



Constructive interference:

$$2nt = \left(m + \frac{1}{2}\right)\lambda \qquad m = 0, \pm 1, \pm 2, \dots$$

$$2nt = m\lambda \qquad m = 0, \pm 1, \pm 2, \dots$$



Thin Films: Example

A soap bubble (*n*=1.33) is floating in air: If the thickness of the bubble wall is 115 *nm*, what is the wavelength of the light that is most strongly reflected?

Constructive interference of "1" and "2"

$$2nt = \left(m + \frac{1}{2}\right)\lambda$$
 (remember phase shift)

For m = 0

$$\lambda = 4nt = 4 \cdot 1.33 \cdot 115nm = 612nm$$

Orange

Ultraviolet

The same for the soap film on the glycerin (n=1.47)

Constructive interference of "1" and "2", but no phase shift (because $n_{glycerin} > n_{soap}$)

$$2nt = m\lambda$$

For m = 1

$$\lambda = 2nt = 2 \cdot 1.33 \cdot 115nm = 306nm$$

