Exam 2 (practice problems)

1. What is the magnitude of electric field at point 1 ?

$$
9 \times 10^{4} \mathrm{~N} / \mathrm{C}
$$

2. What is the magnitude of electric field at point P due to nonconducting infinite planes with uniform charge densities $\sigma_{1}=-\mathbf{5} \frac{\mu C}{\boldsymbol{m}^{2}}, \sigma_{2}=\mathbf{2} \frac{\mu C}{\boldsymbol{m}^{2}}$ and point charge $Q=+\mathbf{1 0} \mu C$ placed at point Q . The distance between points P and Q is 0.5 m . Line, connecting points Q and P , is orthogonal to the planes.

3. Find potential energy of a system of three points charges shown in the figure.

-48.7 J
4. Two 1.0 g beads, each charged to +5.0 nC , are 2.0 cm apart. A 2.0 g bead charged to 10 nC is exactly halfway between them. The beads are released from the rest. What are the speeds of the positive beads, when they are 4 cm apart?

$$
0.22 \mathrm{~m} / \mathrm{s}
$$

5. What is the magnitude of electric field at point P ?

6. Find the magnitude of electric field at point P .

7. What is the electric potential at point P ?

-300 V
8. Four particles $5 \mu \mathrm{C}, 5 \mu \mathrm{C},-2 \mu \mathrm{C}$ and $10 \mu \mathrm{C}$ are placed at the vertices of a square of side 20 cm . The particle with charge $10 \mu \mathrm{C}$ and mass 200 g is released from the rest. How fast will this particle be moving when it will be at an infinite distance from the other particles.

9. Find the potential energy of a system of three points charges shown in the figure.

$$
-35.25 \mathrm{~J}
$$

10. What is the electric flux through the surface?

$+1 \mathrm{nC}$

0
11. Point charge \boldsymbol{q} is placed at the center of insulating uniformly charged sphere of radius $R=\mathbf{8 0} \mathbf{c m}$ and total charge $Q=-\mathbf{1 0} \mu C$. The electric potential at distance $r=50 \mathrm{~cm}$ from the center of the sphere is 0 . What is the value of the charge \boldsymbol{q} ?

$$
8.15 \mu C
$$

