Homework 4 (due: March 7)

1. A switch that connects a battery to a $10 \mu \mathrm{~F}$ capacitor is closed. Several seconds later you find that the capacitor plates are charged to $40 \mu \mathrm{C}$. What is the emf of the battery?
2. (a) A $10 \mu \mathrm{~F}$ capacitor, a $20 \mu \mathrm{~F}$ capacitor, and a $40 \mu \mathrm{~F}$ capacitor are connected in parallel. What is their equivalent capacitance?
(b) A $10 \mu \mathrm{~F}$ capacitor, a $20 \mu \mathrm{~F}$ capacitor, and a $40 \mu \mathrm{~F}$ capacitor are connected in series. What is their equivalent capacitance?
3. To what potential should you charge a $5.0 \mu \mathrm{~F}$ capacitor to store 20.0 J of energy?
4. The potential at the center of a 4.0 -cm-diameter copper sphere is 100 V , relative to $\mathrm{V}=0 \mathrm{~V}$ at infinity. How much excess charge is on the sphere?
5. Two $1.0 \mathrm{~cm} \times 1.0 \mathrm{~cm}$ square electrodes, spaced 0.2 mm apart, are connected to a 30 V battery.
(a) What is the capacitance?
(b) What is the charge on each electrode?
6. What is the equivalent capacitance between points A and B ?

7. What is the equivalent capacitance between points A and B ?

