Physics 2212

 Homework 3 (due: February 26)1. What is the electric flux through (a) surface 1 ; (b) surface 2 ?

2. An initially neutral conductor contains a hollow cavity in which there is a -50 nC point charge. A charged rod transfer -200 nC to the conductor. Afterward, what is the charge (a) on the inner wall of the cavity wall; (b) on the external surface of the conductor?
3. The electric flux through each face of a $2.0 \mathrm{~m} \times 2.0 \mathrm{~m} \times 2.0 \mathrm{~m}$ cube is $500 \mathrm{~N} \mathrm{~m}^{2} / \mathrm{C}$. How much charge is inside the cube?
4. What is the electric potential at point P ?

5. What is the electric potential at point P ?

6. The potential at the center of a $4.0-\mathrm{cm}$-diameter copper sphere is 500 V , relative to $\mathrm{V}=0 \mathrm{~V}$ at infinity. How much excess charge is on the sphere?
7. Find potential energy for two configurations (a) and (b) shown in Fig. Three particles have the following charges $q_{1}=\mathbf{1} \mu C, q_{2}=\mathbf{5} \mu C, q_{3}=-\mathbf{5} \mu C$. Which configuration has the lower energy?

(b)

8. Point charge $\boldsymbol{q}=\mathbf{1 2} \mu C$ is placed at the center of insulating uniformly charged sphere of radius $\boldsymbol{R}=\mathbf{5 0} \mathbf{c m}$ and total charge $\boldsymbol{Q}=\mathbf{- 1 6} \boldsymbol{\mu}$ C. Find electric potential at distance $\boldsymbol{r}=$ 20 cm from the center of the sphere, assuming that electric potential is 0 very far from the sphere.
9. Point charge \boldsymbol{q} is placed at the center of insulating uniformly charged sphere of radius $R=20 \mathrm{~cm}$ and total charge $Q=5 \mu C$. The electric potential at distance $r=10 \mathrm{~cm}$ from the center of the sphere is 0 . What is the value of the charge \boldsymbol{q} ?
10. Four particles with charges $q=1 \mu C, q=1 \mu C, q=1 \mu C$, and $Q=5 \mu C$ are placed at the vertices of a square of side $\boldsymbol{a}=\mathbf{2 0} \mathbf{c m}$. The particle with charge \boldsymbol{Q} and mass $\mathbf{m}=\mathbf{1 0 0}$ \mathbf{g} is released from the rest. How fast will this particle be moving when it will be at infinite distance from the other particles.

